Questo testo è completo. |
Propositione 16
◄ | Libro primo - Propositione 15 | Libro primo - Propositione 17 | ► |
16|16 Essendo protratto direttamente un lato d’un triangolo, qual ne pare, quel farà l’angolo estrinsico maggiore dell’uno e dell’altro angolo intrinsico del triangolo a se opposito.
Sia che ’l triangolo .a.b.c. sia protratto el lato .a.b. per fina in d. Dico che l’angolo .d.b.c. è maggiore di l’uno & dell’altro di duoi angoli di dentro del triangolo a lui oppositi, delliquali l’un è l’angolo .b.a.c. e l’altro è l’angolo .b.c.a. & per dimostrar questo io diuiderò il lato .c.b. in due parti equali, per la dottrina della decima, in ponto .e. & protrarò la linea .a.e. per fin al ponto .f. talmente che la .f.e. sia equale alla .a.e. poi tirarò la linea .f b. & fatto questo io intendo li duoi triangoli .c.e.a. & .b.e.f. & perche li duoi lati .a.e. & .e.c. del triangolo .a.e.c. sono equali alli duoi lati .f.e. & .e.b. del triangolo .f.e.b. & l’angolo .e. dell’uno si è equale all’angolo .e. dell’altro, per la precedente propositione, perche sono angoli contrapositi, & per la quarta propositione, l’angolo .e.c.a. serà equale all’angolo .e.b.f. e per tanto l’angolo .e.b.d. qual è maggiore dell’angolo .e.b.f. sua parte, serà etiam maggiore dell’angolo .a.c.e. per esser l’angolo .a.c.e. equal al .e.b.f. sua parte, & cosi hauemo dimostrato come l’angolo .c.b.d. de fuora del triangolo è maggiore dell’angolo .a.c.b. di dentro del triangolo a lui opposito. Similmente anchora se approua che lui è maggior dell’angolo .c.a.b. Perche diuiderò il lato .a.b. in due parti equale nel ponto .g. per la decima propositione, & protrarrò la linea .c.g. per fin in .h. talmente che la .g.h. sia equale alla .g.c. per la tertia propositione, dapoi protrarrò la .h.b.k. poi intendo li duoi triangoli .a.c.g. & .g.b.h. che li duoi lati .a.g. & g.c. del triangolo .a.g.c. sono equali alli duoi lati .g.b. & .g.h. del triangolo .g.b.h. & l’angolo .g. dell’uno è equale all’angolo .g. dell’altro, per la precedente propositione, & per la quarta propositione, l’angolo .g.a.c. è equale all’angolo .g.b.h. hor perche l’angolo .k.b.d. è equale all’angolo contraposito .g.b.h. per la precedente propositione, serà etiam equale all’angolo .c.a.g. per la prima concettione, & perche l’angolo .c.b.d. è maggiore dell’angolo k.b.d. sua parte, serà etiam maggiore dell’angolo .g.a.c. a quello equale, che è il proposito.
Bisogna aduertir che la linea .h.b. protratta uerso .f. de necessità passa sopra alla linea .b.f. perilche la linea ,b,k, non se discerne dalla linea ,b,f, per esser in quella medesima.