< Pagina:Opere matematiche (Cremona) I.djvu
Questa pagina è stata trascritta e formattata, ma deve essere riletta.
170 intorno ad una proprietà delle superficie curve, ecc.

[[Categoria:Pagine che usano RigaIntestazione|Opere matematiche (Cremona) I.djvu{{padleft:184|3|0]]

Otteniamo dunque finalmente:

11)

3. Le citate equazioni del prof. Chelini, relative agli ombelichi della superficie, somministrano anche:

e per conseguenza:

Lαα1 + Mββ1 + Nγγ1 + L1 (βγ1 + γβ1) + M1 (γα1 + αγ1) + N1 (αβ1 + βα1)
= (αα1 + ββ1 + γγ1)
+ (— p2αα1 + (qβ + rγ) (qβ1 + rγ1))
+ (— q2ββ1 + (rγ + pα) (rγ1 + pα1))
+ (— r2γγ1 + (pα + qβ) (pα1 + qβ1))


d’onde, avuto riguardo alle identità:

αα1 + ββ1 + γγ1 = cos ω,     pα + qβ + rγ = 0,     pα1 + qβ1 + rγ1 = 0,


otteniamo:

Lαα1 + Mββ1 + Nγγ1 + L1 (βγ1 + γβ1) + M1 (γα1 + αγ1) + N1 (αβ1 + βα1)
= cos ω.
Questa voce è stata pubblicata da Wikisource. Il testo è rilasciato in base alla licenza Creative Commons Attribuzione-Condividi allo stesso modo. Potrebbero essere applicate clausole aggiuntive per i file multimediali.