< Pagina:Opere matematiche (Cremona) I.djvu
Questa pagina è stata trascritta e formattata, ma deve essere riletta.
300 intorno alla curva gobba del quart’ordine ecc.

[[Categoria:Pagine che usano RigaIntestazione|Opere matematiche (Cremona) I.djvu{{padleft:314|3|0]]

Ossia:

La curva gobba di quart’ordine e seconda specie ha quattro punti, ne’ quali i piani osculatori rispettivi hanno colla curva un contatto di terz’ordine.

Per m = m’ = 6, s’= 4, la seconda formola di Plückerd’ = 6, cioè la curva d’intersezione nel piano P ha sei tangenti doppie. Una tangente doppia è: o la traccia di un piano che tocchi la sviluppabile lungo due generatrici diverse; ovvero la intersezione di due piani tangenti distinti. Ora la nostra sviluppabile non può ammettere un piano tangente doppio: un tal piano osculerebbe la curva cuspidale K in due punti, il che equivale a segarla in sei punti: cosa impossibile per una curva del quart’ordine. Dunque:

Un piano arbitrario contiene sei rette, ciascuna delle quali è l’intersezione di due piani osculatori della curva gobba di quart’ordine e seconda specie.

Supponiamo ora che il piano segante P sia condotto ad arbitrio per una generatrice G della sviluppabile osculatrice; la sezione sarà composta di quella generatrice e di una curva di quint’ordine e sesta classe. Questa curva avrà due cuspidi, perchè il piano P, essendo tangente alla curva K, la sega in due soli punti fuori della retta G.

Quindi, facendo m = 5, m’ = 6, s = 2, nelle formole di Plücker, avremo d = 4, s’= 5, d’ = 5. Qui abbiamo un flesso di più che nel caso generale: esso è il punto in cui la retta G tocca la curva di quint’ordine (ed anche la curva gobba K).

I sei punti, in cui la curva doppia D e segata dal piano P, sono i quattro punti doppi della curva piana di quint’ordine, ed i due punti in cui questa e intersecata dalla sua tangente stazionaria G. Di qui deduciamo che:

Ogni retta tangente della curva cuspidale K incontra due volte la curva doppia D.

Ossia:

Ogni tangente della curva gobba di quart’ordine e seconda specie incontra due altre tangenti della stessa curva.

Due tangenti della curva K, che s’incontrino, determinano un piano che è doppiamente tangente alla curva medesima. La sezione fatta da un tal piano, nella sviluppabile V, consterà delle due tangenti suddette e di una curva del quart’ordine e della sesta classe. Questa curva non può avere cuspidi, perchè un piano tangente alla curva K in due punti diversi, non può incontrare questa curva in alcun altro punto. Dalle formole di Plücker deduciamo poi, che la curva d’intersezione ha sei flessi, tre punti doppi e quattro tangenti doppie.

Consideriamo ora la sezione fatta nella sviluppabile osculatrice da un piano P che osculi la curva K in un punto g e la seghi in un punto g’, epperò tocchi la sviluppabile medesima lungo una retta G, tangente a K in g. Nella sezione, la generatrice G conterà due volte; quindi, il piano P segherà la sviluppabile secondo una curva di

Questa voce è stata pubblicata da Wikisource. Il testo è rilasciato in base alla licenza Creative Commons Attribuzione-Condividi allo stesso modo. Potrebbero essere applicate clausole aggiuntive per i file multimediali.