< Pagina:Peano - Principii di geometria, 1889.djvu
Questa pagina è stata trascritta e formattata, ma deve essere riletta.

— 36 —

[[Categoria:Pagine che usano RigaIntestazione|Peano - Principii di geometria, 1889.djvu{{padleft:37|3|0]]si ha la 22; eliminando d si ha la 27. L’eliminazione di b darebbe nulla d’importante.

Le proposizioni più importanti di questo § sono le 4, 16, 19, 20, 21, 30, 31, 35, 43, 46.

Le altre, o sono trasformazioni intermediarie, oppure proposizioni che saranno completate dagli assiomi che seguono.


§ 8.

All’Assioma X si può sostituire la proposizione seguente:

  a,b ∈ 1.c, da’b:⊃ .·.e∈ 1.c, dae:— = e∧.

«Se a e b sono punti, e c,d sono punti del raggio a’b allora esiste un punto e tale che i punti c e d appartengano al segmento ae».

Si immagini una porzione di superficie qualunque, e dicansi 1 i punti interni ad essa. Si supponga che esista sempre uno ed un solo arco di geodetica congiungente due punti qualunque della superficie data, e che esso sia sempre interno alla porzione considerata. Indicando con ab l’arco di geodetica che unisce i due punti a e b, interni a quella porzione di superficie, sussisteranno tutti gli assiomi precedenti il X; questo, a seconda dei casi, potrà essere vero, o non; quindi esso non è conseguenza dei precedenti.

Le proposizioni più importanti di questo § sono le 4, 12, 15, 19.


§ 9.

Gli assiomi X e XI si possono sostituire con questa sola proposizione:

a,b,c,d∈ 1.p,qab. p,qcd.p— =q:⊃.·.x,y∈ 1.a,b,c,dx,y:— = xy∧.

«Se a,b,c,d sono punti ed i segmenti ab e cd hanno comuni due punti distinti, quei quattro punti appartengono ad uno stesso segmento».

Sono a notarsi le P. 3, 5, 8, 15, ecc.

Molte altre proposizioni si possono dedurre dagli assiomi finora enunciati. Si lascia al lettore la cura di esaminare da quali di

Questa voce è stata pubblicata da Wikisource. Il testo è rilasciato in base alla licenza Creative Commons Attribuzione-Condividi allo stesso modo. Potrebbero essere applicate clausole aggiuntive per i file multimediali.