< Pagina:Sulle serie a termini positivi.djvu
Questa pagina è stata trascritta, formattata e riletta.
60 ulisse dini

[[Categoria:Pagine che usano RigaIntestazione|Sulle serie a termini positivi.djvu{{padleft:32|3|0]]

e in questi casi, per poter decidere se le serie corrispondenti sono convergenti, o no, bisognerà cangiare la funzione o applicare altri criteri.

Fermiamoci in particolare sul caso in cui si voglia cangiare la funzione . Le considerazioni fatte al num. 22 ci mostrano subito che se, servendosi della serie divergente , si è trovato

la serie divergente che converrà prendere perchè il criterio del n. 19 riesca decisivo (e che certo dovrà esistere) dovrà essere tale che cresca indefinitamente con ; e quindi si può dire che: scelta una serie divergente , se applicando con essa il teorema del num. 19 alla ricerca della convergenza o divergenza di un’altra serie , si troverà il caso dubbio, allora, per potere decidere, converrà prendere invece della serie un’altra serie ancora divergente i cui termini tendano a divenire infinitamente piccoli rispetto a quelli di .

È così che quando non serva il criterio bisognerà passare ad un altro nel quale cresca indefinitamente con , e sia tale che la serie sia divergente. Passando allora ad un ognor più crescente, il criterio finirà per venire decisivo, e le funzioni le più appropriate saranno successivamente quelle funzioni

e le altre

che deducemmo al num. 6 da una stessa serie divergente rappresentata ivi con .

    Questa voce è stata pubblicata da Wikisource. Il testo è rilasciato in base alla licenza Creative Commons Attribuzione-Condividi allo stesso modo. Potrebbero essere applicate clausole aggiuntive per i file multimediali.