< Pagina:Le sfere omocentriche.djvu
Questa pagina è stata trascritta, formattata e riletta. |
4 | Schiaparelli, |
[[Categoria:Pagine che usano RigaIntestazione|Le sfere omocentriche.djvu{{padleft:16|3|0]]
invenzione egli fa risalire ai tempi di Platone, ed anche più indietro[1]. E Maedler, nella sua recente Storia dell’Astronomia crede dimostrare, che le sfere d’Eudosso sono essenzialmente la stessa cosa che gli epicicli di Tolomeo, e non ne differiscono che per la maggior complicazione[2].
Il primo, che abbia impiegato qualche industria per penetrare il segreto del sistema in discorso, sembra sia stato Corrado Schaubach, il quale, fra molti studj da lui fatti sull’Astronomia primitiva dei Greci, uno ne presentò, nel 1800, alla Società delle scienze di Gottinga Sopra le idee d’Eudosso intorno al sistema planetario[3]. I risultamenti di questa investigazione furono da lui esposti nella bella Storia dell’Astronomia greca prima d'Eratostene, pubblicata nel 1802[4]. Malgrado la diligenza con cui questo scrittore studiò le fonti che trattano di questa materia, egli non riuscì a scoprire il nodo della questione, ed anzi fu tratto in inganno nell’interpretazione dei numeri che Eudosso assegna alle rivoluzioni sinodiche dei cinque pianeti.
Il solo che, a mia notizia, abbia tentato con parziale successo di conoscere alquanto a fondo il meccanismo delle sfere omocentriche, e che abbia reso al loro autore la dovuta giustizia, è stato Lodovico Ideler nella sua eccellente monografia intorno ad Eudosso[5], stampata fra le Memorie dell’Accademia Reale di Berlino degli anni 1828 e 1830. Ideler riconobbe il principio fondamentale di questa teoria, e seppe, col mezzo di un globo ordinario, rendersi ragione approssimativamente del modo, con cui Eudosso spiegava le stazioni e le retrogradazioni dei pianeti, ed il loro movimento in latitudine. Tuttavia egli, avendo per le mani altra tela più vasta, non si addentrò abbastanza nello studio di quelle combinazioni di movimenti, e varie cose gli rimasero oscure, di altre non diede esatta interpretazione. Ma sempre gli rimane il merito di aver fatto in questa materia il passo più importante.
Di quelli che vennero dopo Ideler, nessuno (salvo H. Martin) parve aver preso notizia del suo bel lavoro; onde anche oggidì si continua a scriver la storia delle ipotesi d’Eudosso come la scrivevano un secolo fa Montucla e Bailly. Dobbiamo eccettuare sir George Cornewall Lewis, il quale nella sua opera sull’Astronomia degli antichi[6] mostra di conoscere la Memoria d’Ideler, ma non di comprenderne l’importanza; egli pure non ha inteso il senso delle durate assegnate da Eudosso alle rivoluzioni planetarie. Però egli giustamente riconosce, che in questo problema e nella soluzione datane da Eudosso vi doveva esser nascosta molta sottile geometria, sebbene poi non sembri credere possibile di ricondurla alla luce[7].
Nella presente Memoria io mi sono proposto di completare e di correggere l’opera d’Ideler, e di mostrare infine agli astronomi ed ai geometri quale somma d’ingegnose combinazioni
- ↑ Whewell, Geschichte der inductiven Wissenschaften, edizione tedesca di Littrow, vol. 1, 137-139.
- ↑ Maedler, Geschichte der Himmellskunde, p. 47. Brauschweig 1873.
- ↑ Schaubach, Ueber Eudoxus Vorstellung vom Planetensystem. Nelle Gotting. gelehrte Anzeigen del 1800, n. 54.
- ↑ Schaubach, Geschichte der Griechischen Astronomie bis auf Eratosthenes (Göttingen 1802), p. 433-442.
- ↑ Ideler, Ueber Eudoxus. Mem. dell’Acc. di Berlino, Classe istorico-filologica, anno 1828, p. 189-212; anno 1830, p. 49-88.
- ↑ Cornewall Lewis, An historical Survey of the Astronomy of the Anciens. London, 1862, p. 153-156.
- ↑ “It is difficult to understand how these co-revolving orbs were conceived to harmonize in producing a single resulting motion: but the Greeks, even in the time of Eudoxus, were subtle geometers, and they doubtless had formed a clear idea as to the solution of a problem which was substantially geometrical„. Anthistorical Survey, etc. p. 153. E altrove: “The theory of composite spheres, devised by Eudoxus and developed by Callippus and Aristotle, was ingenious and required much geometrical resource.» Ibid., p. 210.
Questa voce è stata pubblicata da Wikisource. Il testo è rilasciato in base alla licenza Creative Commons Attribuzione-Condividi allo stesso modo. Potrebbero essere applicate clausole aggiuntive per i file multimediali.