Questa pagina è stata trascritta, formattata e riletta. |
350 | introduzione ad una teoria geometrica delle curve piane. |
[[Categoria:Pagine che usano RigaIntestazione|Opere matematiche (Cremona) I.djvu{{padleft:364|3|0]] che una curva semplice dell’ordine non può avere più di punti doppi (comprese le cuspidi). Infatti: se ne avesse uno di più, per questi e per altri punti della stessa curva, in tutto punti, si potrebbe far passare una curva dell’ordine , la quale avrebbe in comune colla linea data intersezioni: il che è impossibile, se la curva data non è composta di linee d’ordine minore[1].
Art. VIII.
Porismi di Chasles e teorema di Carnot.
36. Sia dato (fig. 6.a) un triangolo . Un punto qualunque di è individuato dal rapporto ; e parimenti, un punto qualunque di è individuato dal rapporto . Tirate le rette , queste s’incontrino in un punto , che è, per conseguenza, Fig.ª 6.ª determinato dai due rapporti , i quali chiameremo coordinate del punto . La retta seghi in : così si ottiene un terzo rapporto . Fra i tre rapporti ha luogo una semplice relazione, poichè, in virtù del noto teorema di